organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Orthorhombic polymorph of 4-[(1*H*-benzimidazol-1-yl)methyl]benzoic acid

Hai-Wei Kuai* and Xiao-Chun Cheng

Faculty of Life Science and Chemical Engineering, Huaiyin Institute of Technology, Huaian 223003, People's Republic of China Correspondence e-mail: hyitshy@126.com

Received 13 August 2011; accepted 16 October 2011

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; *R* factor = 0.039; *wR* factor = 0.089; data-to-parameter ratio = 10.8.

We reported recently the first polymorph of the title compound [Kuai & Cheng (2011*a*). Acta Cryst., **E67**, o2787]. A second polymorph of the title compound, $C_{15}H_{12}N_2O_2$, was unexpectedly obtained by the hydrothermal reaction of the title compound with manganese chloride in the presence of potassium hydroxide at 413 K. The benzimidazole ring system is almost planar, with a maximum deviation from the mean plane of 0.015 (2) Å. The benzimidazole and benzene rings are inclined at a dihedral angle of 79.00 (1)°. In the crystal, adjacent molecules are connected through $O-H \cdots N$ hydrogen bonds into a one-dimensional chain along the [001] direction.

Related literature

For the synthesis of 4-[(1*H*-benzo[*d*]imidazol-1-yl)methyl]benzoic acid, see: Hua *et al.* (2010). For two other polymorphs of the title compound, see: Kuai & Cheng (2011*a*,*b*). For related structures, see Das & Bharadwaj (2009).

Experimental

Crystal data

 $C_{15}H_{12}N_2O_2$ V = 1269.4 (6) Å³ $M_r = 252.27$ Z = 4Orthorhombic, $P2_12_12_1$ Mo K α radiationa = 5.6969 (15) Å $\mu = 0.09 \text{ mm}^{-1}$ b = 12.657 (3) ÅT = 293 Kc = 17.604 (5) Å $0.30 \times 0.18 \times 0.18 \text{ mm}$

Data collection

Bruker APEXII CCD
diffractometer7948 measured reflections
1786 independent reflectionsAbsorption correction: multi-scan
(SADABS; Sheldrick, 1996)
 $T_{min} = 0.974, T_{max} = 0.984$ 7948 measured reflections
1313 reflections with $I > 2\sigma(I)$
 $R_{int} = 0.040$

Refinement

166 parameters
H-atom parameters constrained
$\Delta \rho_{\rm max} = 0.11 \text{ e } \text{\AA}^{-3}$
$\Delta \rho_{\rm min} = -0.15 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O1-H12\cdots N12^i$	0.82	1.84	2.649 (3)	168
Symmetry code: (i) -	$r \perp \frac{1}{2} - \nu \perp 1$	<u>_ 1</u>		

Symmetry code: (i) $-x + \frac{1}{2}, -y + 1, z + \frac{1}{2}$.

Data collection: *APEX2* (Bruker, 2008); cell refinement: *SAINT* (Bruker, 2008); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg, 2000); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

The authors gratefully acknowledge the Natural Science Foundation of Jiangsu Province of China (grant No. BK2008195) for financial support of this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AA2024).

References

Brandenburg, K. (2000). DIAMOND. Crystal Impact GbR, Bonn, Germany. Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

 Das, M. C. & Bharadwaj, P. K. (2009). J. Am. Chem. Soc. 131, 10942–10943.
Hua, Q., Zhao, Y., Xu, G.-C., Chen, M.-S., Su, Z., Cai, K. & Sun, W.-Y. (2010). Cryst. Growth Des. 10, 2553–2562.

Kuai, H.-W. & Cheng, X.-C. (2011a). Acta Cryst. E67, o2787.

Kuai, H.-W. & Cheng, X.-C. (2011b). Acta Cryst. E67. In the press.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

supplementary materials

Acta Cryst. (2011). E67, o3014 [doi:10.1107/S1600536811042838]

Orthorhombic polymorph of 4-[(1H-benzimidazol-1-yl)methyl]benzoic acid

H.-W. Kuai and X.-C. Cheng

Comment

The title compound, $C_{15}H_{12}N_2O_2$ (**I**), is usually regarded as an excellent candidate for building block in molecular self-assembly engineering due to its variable conformation and coordination modes (Das & Bharadwaj, 2009). During assembly of a coordination polymer, we accidentally obtained three polymorphs of (**I**), which can be proved by different unit-cell parameters and space groups. Here, we are introducing one of them. The single crystals of (**I**) were accidentally obtained by the hydrothermal reaction at 413 K of (**I**) with manganese chloride in the presence of potassium hydroxide as alkaline medium for the deprotonation. As shown in Fig. 1, the asymmetric unit of (**I**) consists of only one molecule. Interestingly, though crystallizing from alkaline solution, (**I**) remains the intact carboxylic group in the crystal structure. The flexible benzimidazolyl arm is apt to rotate. As a result, the benzimidazolyl ring and central benzene rings are inclined at a dihedral angle of 79.00 (1) °; The torsion angles N11—C11—C1—C2 and N11—C11—C1—C6 are -61.8 (2) ° and 118.0 (2) °, respectively. Adjacent molecules are connected through O—H···N hydrogen bonds into a one-dimensional chain along [001] direction (Fig. 2, Table 1).

Experimental

Reaction mixture of $MnCl_2$ (21.5 mg, 0.1 mmol), 4-((1*H*-benzo[*d*]imidazol-1-yl)methyl)benzoic acid (25.2 mg, 0.1 mmol) and KOH (5.61 mg, 0.1 mmol) in 10 ml H₂O was sealed in a 16 ml Teflon-lined stainless steel container and heated to 413 K for 3 days. After cooling to the room temperature, colorless block crystals of the title compound were obtained.

Refinement

All hydrogen atoms were located in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.93–0.97, O—H = 0.82 Å and $U_{iso}(H) = 1.2U_{eq}(C, \text{ or O})$. Absolute structure can not be determined in this case because of no heavy atoms present. Friedel-pair data are merged with the MERG 3 instruction. The number of Friedel pairs is 1229.

Figures

Fig. 1. : The crystal structure of (I) showing 30% probability displacement ellipsoids.

Fig. 2. : The packing diagram of (I). Hydrogen bonds are shown as dashed lines.

4-[(1*H*-benzimidazol-1-yl)methyl]benzoic acid

$C_{15}H_{12}N_2O_2$	F(000) = 528
$M_r = 252.27$	$D_{\rm x} = 1.320 {\rm ~Mg~m^{-3}}$
Orthorhombic, $P2_12_12_1$	Mo K α radiation, $\lambda = 0.71073$ Å
Hall symbol: P 2ac 2ab	Cell parameters from 1326 reflections
a = 5.6969 (15) Å	$\theta = 2.3 - 19.9^{\circ}$
b = 12.657 (3) Å	$\mu=0.09~mm^{-1}$
c = 17.604 (5) Å	T = 293 K
$V = 1269.4 (6) \text{ Å}^3$	Block, colorless
Z = 4	$0.30\times0.18\times0.18~mm$

Data collection

Bruker APEXII CCD diffractometer	1786 independent reflections
Radiation source: fine-focus sealed tube	1313 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.040$
φ and ω scans	$\theta_{\text{max}} = 28.0^{\circ}, \ \theta_{\text{min}} = 2.0^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -7 \rightarrow 7$
$T_{\min} = 0.974, \ T_{\max} = 0.984$	$k = -14 \rightarrow 16$
7948 measured reflections	$l = -23 \rightarrow 20$

Refinement

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H-atom parameters constrained
$w = 1/[\sigma^2(F_o^2) + (0.0455P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} < 0.001$
$\Delta \rho_{max} = 0.11 \text{ e } \text{\AA}^{-3}$
$\Delta \rho_{\rm min} = -0.15 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. Absolute structure can not be determined in this case because of no heavy atoms present. Friedel-pair data are merged with the MERG 3 instruction. The number of Friedel pairs is 1229.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	0.3871 (4)	0.37836 (13)	1.03801 (9)	0.0731 (6)
H12	0.3280	0.3376	1.0688	0.088*
O2	0.0975 (4)	0.48320 (13)	1.07621 (9)	0.0650 (5)
N11	0.4456 (3)	0.78681 (13)	0.75703 (9)	0.0412 (4)
N12	0.2556 (4)	0.74457 (14)	0.65069 (10)	0.053
C4	0.3625 (4)	0.54619 (16)	0.98240 (11)	0.0390 (5)
C11	0.6074 (4)	0.77548 (17)	0.82087 (11)	0.0451 (5)
H6	0.6262	0.8434	0.8456	0.054*
Н5	0.7598	0.7537	0.8019	0.054*
C13	0.1428 (4)	0.83025 (16)	0.68400 (11)	0.0417 (5)
C14	0.2622 (4)	0.85805 (15)	0.75045 (11)	0.0372 (5)
C6	0.6520 (4)	0.60602 (17)	0.89316 (11)	0.0458 (5)
H4	0.7940	0.5954	0.8682	0.055*
C5	0.5733 (4)	0.53174 (17)	0.94491 (11)	0.0473 (6)
Н3	0.6627	0.4717	0.9545	0.057*
C41	0.2678 (5)	0.46665 (17)	1.03690 (11)	0.0472 (6)
C15	0.1919 (4)	0.94228 (17)	0.79536 (12)	0.0462 (6)
H8	0.2725	0.9610	0.8393	0.055*
C1	0.5221 (4)	0.69567 (16)	0.87823 (11)	0.0374 (5)
C17	-0.1262 (5)	0.9687 (2)	0.70573 (13)	0.0572 (7)
H10	-0.2587	1.0071	0.6920	0.069*
C12	0.4308 (5)	0.72183 (17)	0.69610 (12)	0.0510 (6)
H7	0.5348	0.6665	0.6873	0.061*
C16	-0.0036 (5)	0.99675 (19)	0.77139 (13)	0.0557 (6)
Н9	-0.0557	1.0541	0.7998	0.067*
C2	0.3115 (4)	0.71014 (16)	0.91701 (11)	0.0437 (5)
H1	0.2224	0.7704	0.9081	0.052*
C3	0.2344 (4)	0.63641 (15)	0.96819 (11)	0.0426 (5)
H2	0.0936	0.6474	0.9937	0.051*
C18	-0.0555 (4)	0.88605 (18)	0.66126 (13)	0.0526 (6)
H11	-0.1370	0.8678	0.6174	0.063*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	0.0997 (15)	0.0514 (10)	0.0681 (10)	0.0157 (11)	0.0362 (11)	0.0196 (8)
02	0.0673 (13)	0.0707 (11)	0.0571 (9)	0.0034 (10)	0.0240 (10)	0.0109 (8)
N11	0.0449 (11)	0.0390 (9)	0.0396 (9)	-0.0030 (9)	-0.0010 (8)	0.0024 (8)
N12	0.072	0.044	0.042	-0.007	-0.005	-0.002
C4	0.0435 (13)	0.0422 (11)	0.0313 (10)	0.0001 (10)	0.0020 (10)	-0.0025 (8)
C11	0.0395 (13)	0.0473 (12)	0.0484 (12)	-0.0053 (11)	-0.0046 (11)	0.0069 (10)
C13	0.0494 (14)	0.0382 (11)	0.0375 (10)	-0.0108 (10)	-0.0017 (10)	0.0050 (9)
C14	0.0382 (12)	0.0354 (10)	0.0379 (10)	-0.0067 (9)	0.0022 (10)	0.0054 (9)
C6	0.0354 (13)	0.0556 (13)	0.0462 (12)	0.0063 (11)	0.0079 (11)	0.0022 (11)
C5	0.0509 (15)	0.0467 (12)	0.0442 (12)	0.0138 (11)	0.0048 (11)	0.0069 (10)
C41	0.0569 (15)	0.0505 (14)	0.0341 (10)	0.0001 (12)	0.0032 (12)	0.0005 (10)
C15	0.0542 (16)	0.0442 (12)	0.0404 (11)	-0.0009 (11)	-0.0001 (11)	0.0002 (10)
C1	0.0360 (12)	0.0400 (11)	0.0363 (10)	-0.0036 (9)	-0.0045 (9)	-0.0012 (9)
C17	0.0488 (15)	0.0614 (15)	0.0613 (15)	0.0054 (13)	-0.0005 (13)	0.0225 (13)
C12	0.0672 (17)	0.0371 (12)	0.0487 (12)	-0.0035 (12)	0.0066 (12)	-0.0026 (10)
C16	0.0621 (16)	0.0493 (13)	0.0557 (14)	0.0082 (12)	0.0102 (14)	0.0079 (11)
C2	0.0441 (14)	0.0394 (12)	0.0476 (11)	0.0064 (10)	0.0007 (11)	0.0004 (10)
C3	0.0395 (12)	0.0478 (12)	0.0403 (11)	0.0048 (10)	0.0054 (11)	-0.0039 (10)
C18	0.0535 (16)	0.0557 (14)	0.0487 (13)	-0.0134 (13)	-0.0128 (12)	0.0152 (12)

Geometric parameters (Å, °)

O1—C41	1.308 (3)	C6—C1	1.380 (3)
O1—H12	0.8200	C6—C5	1.384 (3)
O2—C41	1.210 (3)	С6—Н4	0.9300
N11—C12	1.354 (3)	С5—Н3	0.9300
N11—C14	1.385 (3)	C15—C16	1.376 (3)
N11—C11	1.461 (3)	С15—Н8	0.9300
N12—C12	1.311 (3)	C1—C2	1.392 (3)
N12—C13	1.390 (3)	C17—C18	1.367 (3)
C4—C3	1.378 (3)	C17—C16	1.396 (3)
C4—C5	1.382 (3)	С17—Н10	0.9300
C4—C41	1.492 (3)	С12—Н7	0.9300
C11—C1	1.509 (3)	С16—Н9	0.9300
С11—Н6	0.9700	C2—C3	1.369 (3)
С11—Н5	0.9700	С2—Н1	0.9300
C13—C18	1.391 (3)	С3—Н2	0.9300
C13—C14	1.398 (3)	C18—H11	0.9300
C14—C15	1.386 (3)		
C41—O1—H12	109.5	O2—C41—C4	122.8 (2)
C12—N11—C14	106.40 (18)	O1—C41—C4	113.5 (2)
C12—N11—C11	126.09 (19)	C16-C15-C14	116.4 (2)
C14—N11—C11	127.18 (16)	С16—С15—Н8	121.8
C12—N12—C13	105.42 (18)	С14—С15—Н8	121.8

C3—C4—C5	118.88 (19)	C6—C1—C2		118.50 (19)
C3—C4—C41	119.0 (2)	C6—C1—C11		120.3 (2)
C5—C4—C41	122.1 (2)	C2-C1-C11		121.2 (2)
N11—C11—C1	112.17 (17)	C18—C17—C16		121.4 (2)
N11—C11—H6	109.2	C18-C17-H10		119.3
С1—С11—Н6	109.2	C16-C17-H10		119.3
N11—C11—H5	109.2	N12-C12-N11		113.4 (2)
C1—C11—H5	109.2	N12—C12—H7		123.3
Н6—С11—Н5	107.9	N11—C12—H7		123.3
N12-C13-C18	130.5 (2)	C15-C16-C17		122.1 (2)
N12-C13-C14	108.94 (19)	С15—С16—Н9		119.0
C18—C13—C14	120.5 (2)	С17—С16—Н9		119.0
N11—C14—C15	132.13 (19)	C3—C2—C1		120.6 (2)
N11—C14—C13	105.84 (17)	C3—C2—H1		119.7
C15-C14-C13	122.0 (2)	C1—C2—H1		119.7
C1—C6—C5	120.7 (2)	C2—C3—C4		121.0 (2)
С1—С6—Н4	119.7	C2—C3—H2		119.5
С5—С6—Н4	119.7	C4—C3—H2		119.5
C4—C5—C6	120.4 (2)	C17—C18—C13		117.6 (2)
С4—С5—Н3	119.8	C17-C18-H11		121.2
С6—С5—Н3	119.8	C13-C18-H11		121.2
O2—C41—O1	123.8 (2)			
C12—N11—C11—C1	-80.9(3)	N11—C14—C15—C16		-179.6(2)
C14—N11—C11—C1	91.6 (2)	C13—C14—C15—C16		0.6 (3)
C12—N12—C13—C18	-178.9(2)	C5—C6—C1—C2		0.7 (3)
C12—N12—C13—C14	1.0 (2)	C5—C6—C1—C11		-179.09 (19)
C12—N11—C14—C15	-179.4 (2)	N11—C11—C1—C6		118.0 (2)
C11—N11—C14—C15	7.0 (3)	N11-C11-C1-C2		-61.8 (2)
C12—N11—C14—C13	0.4 (2)	C13—N12—C12—N11		-0.7 (2)
C11—N11—C14—C13	-173.21 (18)	C14—N11—C12—N12		0.2 (2)
N12-C13-C14-N11	-0.9 (2)	C11—N11—C12—N12		173.93 (19)
C18—C13—C14—N11	179.04 (18)	C14—C15—C16—C17		0.4 (3)
N12-C13-C14-C15	179.0 (2)	C18—C17—C16—C15		-0.9 (4)
C18—C13—C14—C15	-1.1 (3)	C6—C1—C2—C3		-0.7 (3)
C3—C4—C5—C6	-1.0 (3)	C11—C1—C2—C3		179.11 (19)
C41—C4—C5—C6	178.2 (2)	C1—C2—C3—C4		-0.2 (3)
C1—C6—C5—C4	0.1 (3)	C5—C4—C3—C2		1.0 (3)
C3—C4—C41—O2	-9.2 (3)	C41—C4—C3—C2		-178.2 (2)
C5—C4—C41—O2	171.7 (2)	C16—C17—C18—C13		0.3 (3)
C3—C4—C41—O1	171.1 (2)	N12-C13-C18-C17		-179.5 (2)
C5—C4—C41—O1	-8.0 (3)	C14—C13—C18—C17		0.6 (3)
Hydrogen-bond geometry (Å, °)				
D—H···A	D—H	H···A	$D \cdots A$	D—H··· A
01—H12···N12 ⁱ	0.82	1.84	2.649 (3)	168.

Symmetry codes: (i) -x+1/2, -y+1, z+1/2.

Fig. 1

Fig. 2